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Background:  What is Meibography and Why is It Important?

Infrared Imaging of Everted Eyelid and Exposed Meibomian Glands (MG)

• Healthy MG secrete lipid-rich meibum
• Lipid layer stabilizes tear film and protects ocular surface

• Meibography can reveal MG pathology
• Can lead to MG Dysfunction (MGD) and Dry Eye (DE)

MGD →  Poor Lipid Quality/Quantity →  Unstable Tear Film →  Tear Evaporation/Breakup → Hyperosmolarity → 
Activation of Corneal Nerves → DE Symptoms



Machine Learning (ML):  What Can We Learn from Meibography Using AI?

Clinician Diagnoses
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ML:  Meibography Prediction Model Architecture – How We Learn

Implementation
• Segmentation and Attribute Learning Model:

o Segments individual MGs from meibography images
o Calculates eyelid-level and gland-level morphology metrics

• Combine with clinical / subject data for input to Prediction Model
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Meibomian Gland Morphology Clinical Datasets

Attribute Units Summary Diagnoses Subjective Symptoms

Gland Length mm Meibomian Gland Dysfunction Berkeley DEFC

Gland Width mm Aqueous Deficiency OSDI

Tortuosity % Blepharitis SPEED

Local Contrast % Clinical Signs DEQ-5

Visible Glands # MG Morphology / Function CLDEQ-8

Gland Density % Corneal / Conjunctival Staining VAS Ratings Discomfort Severity

Gland Atrophy % Area Lipid Layer Thickness / Variability VAS Ratings Discomfort Frequency

Ghost Gland [Yes/No] NITBUT / FTBUT VAS Ratings Dryness Severity

TMH / Schirmer VAS Ratings Dryness Frequency



ML:  Meibography Prediction Model Architecture – How We Learn
Prediction Model:  Training and Evaluation

• n=458 meibography images with corresponding subject symptoms and 
clinical measurements 
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For each predicted outcome:

• Data and images randomly allocated into 5 model training and validation sets

• Train 5 models, each with different validation set

• Aggregate and rank highest weighted features from the 5 models

• Return mean accuracy and the median # of features used for prediction



ML:  Meibography Prediction Model Architecture – How We Learn
Model Output: Predicted Outcomes and Statistics
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[Predicted Classes] Predictive Features Class-wise 
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Total # 
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Accuracy (%)
Eyelid Margin Vascularization 

[Absent, Present]
Ghost MG (%) [6,  15]

82 85.9
MG Density (%) [37,  34]

Visible MG: UL (#) [18.4,  16.0]
Erythema: UL (0-3) [0.14,  0.95]
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Meibomian Gland Morphological Features Are Among Highest Weighted Outcome Predictors

Greater MG Width

Meibography and Machine Learning: What Have We Learned So Far?

Greater Contrast Lower MG Density Greater % Atrophy Greater % Ghost MG

Fewer Visible Glands in Meibography Image

Greater Meibum 
Quantity (98.0%)

Better Meibum 
Quality (94.0%)

Eyelid Notching (95.9%),
Eyelid Skin Vascular. (85.9%)

Greater CS Extent (91.2%)
More Erythema (99.1%)

Greater Meibum Qty (98.0%)

Eyelid Skin Vascular. (85.9%), 
Lower Tear Meniscus Ht (72.6%), 

Lower VAS Comfort Rating (65.4%)

MGD Diagnosis (74.4%),
Aqueous Deficiency Diag. (85.2%),

Blepharitis Diagnosis (73.7%)

Eyelid Skin Vascular. (85.9%),
Schirmer < 5mm (92.5%),

FTBUT < 9s (Non-Asian; 87.4%)

Higher OSDI Score (68.1%),
Higher VAS Dryness Rating (66.1%),

DEFC Debilitating Symptoms (CLW; 63.9%)D
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MGD Diagnosis can 
be predicted with 
74.4% accuracy

Aqueous Deficiency 
Diagnosis can be 
predicted with 
85.2% accuracy

Blepharitis Diagnosis
can be predicted with 
73.7% accuracy

PREDICTOR MGD No MGD
# Visible MG 14.8 15.6

Lipid Layer Thickness (nm) 57.8 68.2
NITBUT (sec) 10.0 13.8

PREDICTOR AQDEF No AQDEF
# Visible MG 14.0 15.5

Conjunctival Staining (0-3) 2.2 1.4

PREDICTOR BLEPH No BLEPH
# Visible MG 17.8 20.0

Age (yrs) 30.4 25.0
Lid Margin Erythema (0-3) 0.44 0.18
LOM Displacement (mm) 1.00 0.72

Meibography and Machine Learning: What Have We Learned So Far?
Meibography Features are Predictive of Some Summary Diagnoses with 74-85% Accuracy



Meibography and Machine Learning: What Have We Learned So Far?
Meibography Features are Predictive of Some Clinical Signs with >90% Accuracy

Eyelid Notching (95%) Vascularization (86%) Erythema (99%)

Less Meibum
Quantity (91%)

FTBUT < 9s (87%)Schirmer <5mm (93%) Corneal Staining (91%)Lower TMH (86%)

Lower Local Contrast Less Gland Width

Poor Meibum
Quality (94%)

More Ghost GlandsLower Gland Density Fewer Visible Glands More Gland Atrophy



Meibography and Machine Learning: What Have We Learned So Far?
Meibography Features are Predictive of Some DE symptoms, but only with 64-68% Accuracy

Fewer Visible MG Greater % Ghost Glands

Higher OSDI Score (68.1%)
Higher VAS Dryness Severity Rating (66.1%)
Debilitating Symptoms DE in CLW (63.9%)

Higher VAS Dryness Discomfort Rating (65.4%)



Meibography and Machine Learning: What Have We Learned So Far?
Meibography images alone can predict MG Function

MG Function Predictions Using Only MG Morphological Features

Predicted Outcome Accuracy (%) Highest Weighted Features

Length Width Tortuosity Density Contrast %Ghost %Atrophy #MG

Meibum Quality

Upper Lid, Central 94.0 ü ü ü ü ü

Lower Lid, Central 96.3 ü ü ü ü ü

Upper Lid, Entire 86.7 ü ü ü ü ü

Lower Lid, Entire 87.4 ü ü ü ü ü

Meibum Quantity

Upper Lid, Central 97.2 ü ü ü ü ü

Lower Lid, Central 99.1 ü ü ü ü ü

Upper Lid, Entire 92.5 ü ü ü ü ü

Lower Lid, Entire 94.0 ü ü ü ü ü



Meibography and Machine Learning: What Have We Learned So Far?
Meibography images alone can predict some clinical signs

• The highest accuracy Symptoms
prediction:  Debilitating Symptoms DE 
(DEFC), NonCLW – Accuracy = 79.6%

Highest Weighted MG Features:
Tortuosity, Contrast, Width, Length, # MG

• The highest accuracy Diagnosis
prediction:    Aqueous Deficiency –
Accuracy = 79.5%

Highest Weighted MG Features:
Length, Tortuosity, Width, # MG, % Ghost

Other Clinical SIgns Predictions Using Only MG Morphological Features

Predicted Outcome Accuracy (%) Highest Weighted Features

Length Width Tortuosity Density Contrast %Ghost %Atrophy #MG

Eyelid Notching 95.4 ü ü ü ü ü

Blepharitis, Upper Lid 79.8 ü ü ü ü ü

Blepharitis, Lower Lid 91.7 ü ü ü ü ü

Erythema, Upper Lid 96.8 ü ü ü ü ü

Erythema, Lower Lid 97.0 ü ü ü ü ü

Lid Margin Redness 83.5 ü ü ü ü ü

LoM Displacement, Upper Lid 84.6 ü ü ü ü ü

Lid Wiper Epitheliopathy, Width 82.0 ü ü ü ü ü

Corneal Staining Extent 90.6 ü ü ü ü ü

Corneal Staining Depth 83.2 ü ü ü ü ü

Schirmer < 5mm 91.1 ü ü ü ü ü

FTBUT < 9s, Non-Asians 81.7 ü ü ü ü ü



Meibography and Machine Learning: What Have We Learned So Far?

Meibography images alone can predict some identifying patient characteristics

Age ≤ 39 39 < Age < 50 Age ≥ 50
% MG Atrophy 18.1 25.2 33.6

% Ghost Glands 5.6 14.2 28.7

AGE can be 
predicted from 
meibography 
images alone 
(75.8% accuracy)

ETHNICITY can be 
predicted from 
meibography 
images alone 
(85.8% accuracy)

Asian Caucasian
% MG Density 42.0 39.2

% Ghost Glands 7.9 10.5



Conclusions

• Using machine learning, we can quickly and accurately quantify MG morphological features

• MG morphological features are predictive of MG function, clinical signs, subjective 
symptoms, and summary clinician diagnoses, with varying degrees of accuracy
• Clinical signs predicted with higher accuracy than symptoms

• Meibography images can reveal characteristics of the patients who provided them
• Predicted age and ethnic group from meibography images (75-86% accuracy)

• De-identified medical imaging is not currently considered Protected Health Information (PHI)
• Meibography could soon be a biometric identifier of individuals (“fingerprint”)
• Patient privacy laws and regulations need constant monitoring and updating as technology evolves



Summary


