CS 285 Final Project Report
Brian Zhu, Tejasvi Kothapalli

Abstract

RL algorithms are generally successful in memorizing tasks very well and performing well on
tasks very similar to the trained domain. However, oftentimes RL algorithms fail at new tasks.
Open Al released the Gym Retro Contest to challenge people to create RL algorithms that
respect the “train, test” split. Contestants are allowed to train on a certain set of training levels
but final results are measured on unseen levels. The contest games are from the Sonic The
Hedgehog™ series.

Previous Contestants and Open Al benchmarks suggested that using PPO or Rainbow as the
baseline RL algorithm would be a good starting point. We wanted to build on top of these RL
algorithms with meta-learning and exploration strategies. To our knowledge no previous efforts
used Recurrent Policies for meta-learning. Furthermore, we wanted to use Random Distillation
Networks as our exploration strategy.

We found that using a LSTM-based recurrent policy improved the performance of Joint PPO
with a CNN policy during fine tuning test levels, suggesting that meta-learning does help the
agent learn faster in unknown but similar environments. In addition, we also found that using an
exploration reward bonus through random network distillation improved performance during fine
tuning as well, suggesting that improving state coverage is an important factor in efficiently
completing levels in the Sonic benchmark. However, we did not observe additional performance
benefits by using both recurrent policies and random network distillation at the same time.

Introduction

Open Al released the Retro Contest [1] which measures a reinforcement learning algorithm’s
ability to generalize from previous experience. Many reinforcement learning algorithms are able
to memorize a certain task very well. However, these same models are not necessarily robust to
new tasks. The contest released a set of training levels for the Sonic The Hedgehog™ series and
the contest was intended to test the proposed RL algorithms on unseen levels. In this project we
approach this contest with two new approaches. We first explore meta-learning with recurrent
policies [2]. Second, we explored the use of enhanced exploration with Random Network
Distillation [3].

Overview of Sonic Game Contest

The Sonic The Hedgehog™ series is emulated through Open AI’s python package Gym Retro.
There are three specific Sonic games all with their own set of levels: Sonic The Hedgehog, Sonic
The Hedgehog 2, and Sonic 3 & Knuckles. We only experimented with Sonic The Hedgehog.
Each game has a set of zones and each zone is further split into acts. Game play can end in three
manners: the player successfully finishes the level, player loses a life, or 4500 timesteps have
elapsed. The observation used for the model is a 320 by 224 pixel RGB image. The action space
is the following: : B, A, MODE, START, UP, DOWN, LEFT, RIGHT, C, Y, X, Z. The reward
function is split into two parts. The first part is horizontal displacement from the initial position.
The second component is the completion bonus

Previous Work

Retro Baseline Algorithms

Open Al released benchmark algorithms for the contest [6]. The figure below is from the Open
Al benchmarks highlighting the reward of various RL algorithms on the test sets. We noticed that
PPO joint performed best in the benchmarks so we decided to explore this algorithm as our RL
algorithm.

2000 [==- Human Average '~~~ "TTTTTTTT
—— Rainbow
6000 4 JERK
— PPO
5000 - PPO (joint)
—— Rainbow (joint)
4000 A
3000 4
2000 +
1000 A
0.0 0.2 0.4 0.6 0.8 1.0

Timesteps (millions)

PPO is a policy gradient algorithm. The PPO policy is trained with a joint training algorithm.
This is where the policy is concurrently trained on all 188 available training levels. They note
that in order to have training converge they had to run hundreds of millions of timesteps. This
was simply not possible for us to replicate so we instead chose 8 training set levels and still used
joint PPO. Open Al suggests using exploration objectives to improve upon the benchmarks
which motivated our use of Random Network Distillation.

Top Contestant Approaches

Next we will discuss successful approaches to the contest [11] and motivate why we wanted to
explore meta-learning and exploration strategies for this project. All the top contestants either
tuned or modified existing RL algorithms like PPO and Rainbow. In terms of exploration one
contestant implemented VAE’s to encode the image states [13, 14]. Another contestant tried
Noisy Networks for Exploration, #Exploration, and Curiosity-driven Exploration. This contestant
noted that their results did not provide conclusive results about the benefits of exploration. Thus
we wanted to further explore the prospects of exploration. None of the top contestants tried
explicit meta-learning techniques which motivated us to explore Recurrent Policies.

Recurrent Policies

Recurrent policies [2] collect, process, and store transitions over multiple episodes in its hidden
state, which is then used to generate a policy. This can be interpreted as using previous
transitions to understand the task, and the hidden state that is generated serves as a context to
guide the policy. The context in this case could be generated from visual or structural cues in the
level to aid the agent’s decision-making process.

Random Network Distillation

Random network distillation [3] utilizes the process of distilling a neural network to match
another as a way to estimate the density of states visited. In particular, a prediction and target
network are initialized with two different random-sampling schemes, and the prediction network
is trained to match the output of the target network on next observations. If the prediction

network fits to the output of the target network at a specific state well, then it has most likely
visited the state. The squared error in prediction can be used as a reward bonus.

Experiment

Overview

The experiment consists of two parts. In the first part, which we will refer to as training, the
agent trains on an initial training set of levels. Parameter sharing or other forms of information
sharing between levels is permitted and the agent can train for as long as possible. In the second
part, which we refer to as fine tuning, the agent continues to train on another set of test levels.
The agent’s policy and value function are initialized to those from the end of training and sharing
information between test levels is not permitted. Agents can only fine tune on each level for 1
million steps. Due to computational restrictions, we reduced the size of the training and test set
of levels to the following:

Training Set Test Set

ROM Zone Act ROM Zone Act
Sonic The Hedgehog | SpringYardZone |2 Sonic The Hedgehog | SpringYardZone 1
Sonic The Hedgehog | SpringYardZone | 3 Sonic The Hedgehog | GreenHillZone 2
Sonic The Hedgehog | GreenHillZone 1 Sonic The Hedgehog | StarLightZone 3

Sonic The Hedgehog | GreenHillZone 3

Sonic The Hedgehog | StarLightZone 1

Sonic The Hedgehog | MarbleZone 1
Sonic The Hedgehog | MarbleZone 2
Sonic The Hedgehog | MarbleZone 3

Table 1: Levels used for training and fine tuning.

The Sonic Gym-Retro Environment

All Sonic levels are loaded using the gym-retro [4] and retro-baselines [5] repositories. The agent
takes an action every 4 frames, which will be the length of one timestep. We followed OpenAl’s
original set of actions as well as the frame-skipping and sticky-action mechanics, please refer to
their technical report [6] for more details. Since the goal is to get Sonic from the left side of the
map to the right, reward is calculated based on horizontal offset. We use the backtracking
mechanic where the agent receives a positive reward if they increase the maximum horizontal
progress from the start, and receives 0 reward otherwise. This is to prevent the reward from

discouraging the agent from moving backwards, which may be necessary depending on the
complexity of the level. Again, please refer to [6] for more information. Reward is normalized to
be out of 9000, with an additional 1000 reward bonus for completing the level. The maximum
trajectory length is 4500 timesteps.

Algorithm and Policies

We start with a Joint PPO baseline and build off it in two ways: by switching to a recurrent
policy (CNN-LSTM) and by using random network distillation [3] to introduce an exploration
bonus.

Joint PPO (CNN PPO): An implementation of this can be found in stable-baselines [§], a
modern port of OpenAl’s original baselines repository [9]. “Joint” refers to the process of
running multiple environments in parallel and sharing gradients with a single policy. In our case,
PPO [10] uses a single policy to collect rollouts in each level and saves the transitions into a
single rollout buffer. The transitions are then sampled from this buffer to run policy gradient.

Joint PPO with recurrent policy (CNN-LSTM PPO): We replaced the CNN based policy with an
LSTM on features extracted with a CNN. Using a recurrent policy allows the agent to process
previous transitions into an improved policy. In this setting, where we have a training and test set
of environments, we can interpret this as the agent meta-learning on the transitions collected
during training in hopes for fast fine tuning. The implementation for CNN-LSTM PPO can be
found in an experimental fork of stable-baselines [12].

Joint PPO with random network distillation (CNN PPO RND): We use random network
distillation [3] as an exploration bonus for Joint PPO to encourage the agent to continue
exploring even if the rewards from the environment suggest otherwise. The model used for
random network distillation was a CNN feature extractor followed by a two-layer FC network.
The weights of the feature extractor are frozen. The original paper suggested creating a separate
value head that estimates returns for the exploration bonus (intrinsic reward), and combining the
value estimates with the original value net trained on environment rewards (extrinsic reward)
when calculating the advantage for policy gradient. We opted to use a simpler method, where we
modified the reward by taking a weighted average of the intrinsic and extrinsic reward:

r,= (xiit +age,

Where both alpha’s are predefined. RND hyperparameters are listed in Table 2.

Joint PPO with recurrent policy and RND (CNN-LSTM PPO RND): We finally combined the
two changes together to see if there were any additional performance benefits.

All models are trained with the 8 training levels in parallel over a total of 8 million timesteps.

Results

Note that the figures show a scaled reward. The Sonic environment scales the total reward to be
out of 9000, but for the model, the total reward is out of 45.

testStarLightZone

0

(o)
(¥}
i

P
]
i

mllout/ep_rew_mean
&
i

10 1 —— CNM PPO
CMNM-LSTM PPO
£ = CHNN PPO BND
= LCMNMN-LSTM PPO RND
T T T T T T
0.0 02 04 0.6 0a 10
mean retums 1e=6
testSpringYardZone
£]
25

mollout/ep_rew_mean
&
i

10 = CNM PPO
CNN-LSTM PPO
c | —— CMN PPO RND
—— CMN-LSTM PPO RND
T T T T T T
0.0 0.2 04 06 0.8 10

mean retums 16

testGreenHillZone

= A =

mllout/ep_rew_mean
[
(%))

10 1 —— CNM PPO
| CNM-LSTM PPO
5 _,I CNMN PPO RND
— CMN-LSTM PPO RND
0o 0z 04 0& 08 10
mean retums 1et

Discussion

Baseline Results

We see that across all seeds and environments, CNN PPO has poor performance during fine
tuning. The policy starts with decent performance but it quickly deteriorates. This could be due
to the small training set, where the distribution of level visuals and structure is not diverse
enough, and the agent could overfit to the level. However, this does not account for why the
agent consistently starts with decent returns, and there needs to be additional investigation into
why this behavior occurs

Effect of Using a Recurrent Policy

Across all seeds and environments, CNN-LSTM PPO is able to start with decent returns and
continue maintaining decent returns during, which is a significant improvement over the
performance of CNN PPO. This shows that using a recurrent policy improves the efficiency of
learning, as the agent is able to quickly adjust to the new test environments and achieve similar
returns. Perhaps by training on a larger set of levels, a recurrent policy would be able to improve
returns over the course of fine tuning.

Effect of Using Random Network Distillation [3]

During fine tuning, CNN PPO RND has a initial dip in performance, but quickly recovers and
maintains good returns, which is a significant improvement over the performance of CNN PPO.
This suggests that when well-tuned, the exploration signal is beneficial for the policy. This
makes sense, as the policy is able to see a larger distribution of states and this robustness carries
over when fine tuning.

Effect When Using Both

There does not seem to be additional benefit to using both recurrent policies and random network
distillation together when compared to using either one individually. This reflects the same “skill
ceiling” seen by other methods, where the average returns does not exceed 30 (about 6000
reward in game), suggesting that there may need to be additional algorithmic improvements to
achieve better performance.

Citations

[1] Hesse, Christopher. “Retro Contest.” OpenAl, OpenAl, 29 June 2020,
https://openai.com/blog/retro-contest/.

[2] Duan, Schulman, Chen, Bartlett, Sutskever, Abbeel. RL2: Fast Reinforcement Learning via
Slow Reinforcement Learning. 2016.

[3] Burda et al. Exploration by random network distillation. 2018.

[4] https://github.com/openai/retro

[5] https://github.com/openai/retro-baselines
[6] Alex Nichol, Vicki Pfau, Christopher Hesse, Oleg Klimov, & John Schulman. (2018). Gotta

Learn Fast: A New Benchmark for Generalization in RL.

[8] https://github.com/DLR-RM/stable-baselines3

[9] https://github.com/openai/baselines

[10] https://arxi

[11] Schulman, John. “Retro Contest: Results.” OpenAl, OpenAl, 2 Sept. 2020,
https://openai.com/blog/first-retro-contest-retrospective/

[12] https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
[13] Stadie et al. Incentivizing Exploration In Reinforcement Learning With Deep Predictive

Models 2015
[14] “World Models Applied to Sonic.” World Models Applied to Sonic | Dylan's Blog,
https://dylandjian.github.io/world-models.

Member Contributions
Tejasvi: Gym Retro Setup, Initial Benchmark Running, Evaluation and Visualization.

Brian: Setting up stable-baselines to work with Sonic levels. Setting up forked stable-baselines
repo to run recurrent policies. Edited stable-baselines to run random network distillation.

https://github.com/openai/retro
https://github.com/openai/retro-baselines
https://github.com/DLR-RM/stable-baselines3
https://github.com/openai/baselines
https://arxiv.org/abs/1707.06347
https://openai.com/blog/first-retro-contest-retrospective/
https://github.com/Stable-Baselines-Team/stable-baselines3-contrib

